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SUMMARY

Antigen-specific T cells play a major role in mediating
the pathogenesis of a variety of autoimmune con-
ditions as well as other diseases. In the context
of experimental autoimmune encephalomyelitis, a
murine model of multiple sclerosis, we present here
a general approach to the discovery of highly specific
ligands for autoreactive cells. These ligands are
obtained from a combinatorial library of hundreds
of thousands of synthetic peptoids that is screened
simultaneously against two populations of CD4+
T cells. Peptoids that recognize autoreactive T cells
with extremely high specificity can be identified in
the library. Since no specific knowledge is required
regarding the nature of the native antigens recog-
nized by the autoreactive T cells, this technology
provides a powerful tool for the enrichment and inhi-
bition of autoimmune cells in a variety of disease
states.

INTRODUCTION

The molecular basis of many autoimmune diseases remains

unknown. In general, the immune system recognizes a native

molecule as a foreign antigen and mounts an attack on self-

tissue harboring these molecules. But exactly why this occurs

and the nature of the self-antigens that trigger and drive the

process are often unclear. Due in part to this lack of a molec-

ular-level understanding, the state of the art in the development

of diagnostic agents and effective therapies for autoimmune

diseases is far from optimal. Almost without exception, drugs

used to treat these conditions either inhibit an event downstream

of the autoimmune response itself, such as inflammation, or

attempt to modulate the immune system nonselectively

(Hemmer and Hartung, 2007), with significant undesirable side

effects. Molecules that target autoreactive T cells directly but

ignore T cells that recognize foreign antigens would be valuable

tools in medicine for the detection and enrichment of autoim-

mune T cells. In addition, these molecules could serve as the

foundation for a novel drug development program aimed at erad-
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icating these autoreactive cells without affecting the proper func-

tion of the immune system.

Multiple sclerosis (MS) is an immune-mediated inflammatory

disease of the central nervous system that results in demyelin-

ation and neurologic disability (Noseworthy et al., 2000). The

MS-like condition of experimental autoimmune encephalomy-

elitis (EAE) is induced in genetically susceptible strains of rodents

by immunization with myelin proteins or peptides or by passive

transfer of myelin-specific CD4+ T cells (Zamvil and Steinman,

1990). Studies in EAE indicate that myelin-specific CD4+

T cells that have become activated in the periphery and produce

proinflammatory cytokines play a major role in disease patho-

genesis of MS (Zamvil and Steinman, 1990). Moreover, these

T cells express T cell receptors (TCRs) that are believed to pref-

erentially recognize myelin basic protein in the central nervous

system of affected individuals, leading to destruction of the

myelin sheath and, ultimately, neurological deficit (Zamvil and

Steinman, 1990). Therefore, a therapeutic strategy that specifi-

cally targets only autoreactive T cells would be interesting to

investigate for MS.

RESULTS AND DISCUSSION

A Screen for Specific Autoreactive T Cell Ligands in EAE
As a first step toward exploring this possibility, we focused on

the isolation of synthetic compounds capable of highly specific

binding to autoreactive T cells in EAE. To accomplish this, we

adapted a screening strategy developed previously in our labo-

ratory for the isolation of peptoids [oligo-N-substituted glycines

(Simon et al., 1992)] that bind to G protein-coupled receptors

with high specificity (Udugamasooriya et al., 2008). In this

protocol, cells that do or do not express the target receptor,

but are presumed to be otherwise identical, are labeled with

red and green quantum dots, respectively, mixed together, and

incubated with thousands of hydrophilic beads that display

different peptoids (each bead displays a unique peptoid). Beads

that bind only the red-labeled cells, but not the green cells, are

then collected; the presumption being that this reflects highly

specific binding to the target receptor since the peptoid must

ignore all other molecules on the cell surface in order to exclude

the green cells and be scored as a ‘‘hit’’ (Figure 1A).

To apply this two-color screening technology to the present

problem, EAE was induced in B10.PL mice by immunization
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with the myelin basic protein peptide Ac1-11 (MBP Ac1-11) and

Complete Freund’s Adjuvant. Immunization with this myelin

peptide results in activation and expansion of CD4+ T cells

expressing the MBP Ac1-11-specific Va2.3/Vb8.2 TCR (Ando

et al., 1989). These animals or mice immunized with Complete

Freund’s Adjuvant alone were sacrificed following the develop-

ment of clinically definite EAE (see Figure S1A available online)

and the CD4+ T cells were isolated. CD4+ T cells from EAE

mice and controls were labeled with red- and green-emitting

quantum dots, respectively. The cells were then mixed together

in a 1:1 ratio and incubated with a bead-displayed peptoid library

containing approximately 300,000 peptoids (Figure S1B). We

hypothesized that the millions of different T cells in the overall

population should all be present at low levels and that the two

populations would be rather similar. The major exception, of

course, would be an increased number of MBP Ac1-11-specific

autoreactive T cells that expanded in response to immunization

with the autoantigen in the EAE mice. This suggested that if

a bead was found with only red cells, these were highly likely

to be the autoreactive T cells (Figure 1A).

After incubation with the peptoid beads, only beads binding

red-labeled T cells were selected as possible hits. Using this

methodology, we identified two putative hit peptoids that were

observed to bind specifically to CD4+ T cells from EAE mice

and not to T cells from the control animals (Figure 1B, i and ii).

The peptoids on the two beads scored as hits were sequenced

by Edman degradation (Alluri et al., 2003). Their deduced struc-

tures are illustrated in Figure 1C. The two ‘‘hits’’ were found to

have some sequence similarity, so we elected to focus on one

of them (AG12A) for more detailed characterization. Neither

had any obvious structural relationship to the antigenic peptide

(Ac-ASQKRPSQRSK) other than the presence of some positively

charged residues.

The AG12A Peptoid Is a Ligand for EAE Autoreactive
T Cells
To further evaluate the binding of AG12A to the autoreactive

T cells, we took advantage of the existence of transgenic mice,

in which the vast majority of CD4+ T cells express the MBP

Ac1-11-specific TCR Va2.3/Vb8.2 (Goverman et al., 1993).

AG12A was resynthesized on beads, as was a control peptoid

(see Figure S2). The beads were incubated with red quantum

Figure 1. Identification of Putative Autoreactive T Cell Binding Pep-

toids Using a Bicolor On-bead Screening Protocol

(A) Schematic representation of the peptoid screening protocol. CD4+ T cells

isolated from EAE mice have an increased frequency of Va2.3/Vb8.2 MBP

Ac1-11-specific TCRs compared to wild-type healthy control littermates. After

isolation, T cells were differentially labeled with green and red quantum dots

and screened against a bead-displayed peptoid library. Peptoid beads binding

only cells from EAE mice were selected and sequenced.

(B) Fluorescent microscopic images of peptoid beads after screening and

washing (1003 magnification; DAPI filter). (i and ii) Photographs depicting

the two putative hit peptoid beads bound to CD4+ T cells from EAE mice

(red stained cells). (iii) Photograph depicting peptoid beads binding to CD4+

T cells from healthy mice and EAE mice.

(C) Chemical structures of the two hits identified in the screen.

(D) Fluorescent microscopic images of tentagel beads displaying AG12A

bound to autoreactive T cells. (i) CD4+ T cells from B10.PL wild-type control

mice do not bind AG12A peptoid beads. (ii) CD4+ T cells from Va2.3/Vb8.2

MBP Ac1-11 TCR transgenic mice bind to AG12A peptoid beads.
9 Elsevier Ltd All rights reserved
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Figure 2. AG12A Binds MBP Ac1-11-Specific T Cells with Mid Micromolar Affinity and High Specificity

(A) Flow cytometric analysis of Va2.3/Vb8.2 MBP Ac1-11 TCR transgenic versus B10.PL wild-type CD4+ T cells in the presence of increasing concentrations of

biotin-DOPA-AG12A. Cells were pre-incubated with 1 mM, 10 mM, 100 mM, 250 mM, or 500 mM concentrations of biotin-DOPA-AG12A, cross-linked, and stained

with anti-CD4-PerCP-Cy5.5 and anti-streptavidin-allophycocyanin. Two color flow cytometry was used to determine the estimated binding affinity of biotinylated

AG12A for autoreactive CD4+ T cells. The results are depicted as overlaying histograms with the green line representing Va2.3/Vb8.2 MBP Ac1-11 TCR trans-

genic T cells and the blue line representing B10.PL wild-type CD4+ T cells. The red line represents a no peptoid negative control. The mean fluorescent intensity

was determined for each concentration of peptoid tested using Flowjo software. Only Va2.3/Vb8.2 MBP Ac1-11 TCR transgenic T cells were found to bind

AG12A. Results shown are representative of three independent experiments.

(B) Binding isotherm of AG12A for Va2.3/Vb8.2 MBP Ac1-11 TCR transgenic T cells evaluated by flow cytometry. Mean fluorescent intensities for each concen-

tration of peptoid tested was plotted for TCR transgenic T cells + AG12A, wild-type T cells + AG12A, TCR transgenic T cells + control peptoid, and wild-type

T cells + control peptoid. The half-maximal binding activity was calculated using GraphPad Prism software and estimated to be approximately 40 mM.
dot-labeled MBP Ac1-11-specific T cells. As shown in Figure 1D,

CD4+ T cells from MBP Ac1-11 TCR transgenic mice bound to

AG12A displayed on beads, whereas wild-type CD4+ T cells

did not (Figure 1D).

A solution phase binding experiment was also carried out

using flow cytometry as the readout. Initial attempts to measure

binding of AG12A to MBP Ac1-11-specific T cells resulted in

a lower than expected amount of binding. This, we concluded,

was probably due to the rapid dissociation of the receptor/ligand

binding since there is no opportunity for avidity effects to stabi-

lize the peptoid-T cell interaction as is the case when the peptoid

is densely displayed on a bead surface. In an attempt to stabilize

the binding of the peptoid to its target receptor on the T cells, we

used a chemical cross-linking technique that involves the oxida-

tion of dihydroxyphenylalanine (DOPA) attached to the peptoid

to an ortho-quinone intermediate (see Figure S3 for the struc-

tures of the modified peptoids). This intermediate can then

cross-link to nearby nucleophilic residues on the target receptor

protein (Burdine et al., 2004; Liu et al., 2006; Lim et al., 2007).

Biotin-DOPA-AG12A and a control biotin-DOPA peptoid were

synthesized and incubated with CD4+ T cells from MBP
Chemistry & Biology 16, 1133–11
Ac1-11 TCR transgenic mice or wild-type controls. Following

addition of the oxidizing agent, sodium periodate, the reaction

was quenched and the cross-linked cells were stained with fluo-

rochrome-conjugated streptavidin and fluorochrome-conju-

gated anti-CD4+. Peptoid binding to the T cells was assessed

by calculating the mean fluorescence intensity of CD4+/strepta-

vidin+ cells. AG12A bound to MBP Ac1-11-specific T cells with

a half maximal binding activity of approximately 40 mM (Figures

2A and 2B; note that this cross-linking experiment does not

monitor equilibrium binding, so this value may not correspond

to the true Kd). No significant interaction between biotinylated

AG12A and wild-type T cells could be detected, nor did the bio-

tinylated control peptoid bind to the Va2.3/Vb8.2 TCR transgenic

T cells (Figure 2B). However, a constant level of autofluores-

cence was seen in the peptoid-treated wild-type T cells that was

not present in the transgenic population. The reason for this

autofluorescence is not completely understood, but is believed

to be related to the DOPA-mediated cross-linking reaction in

this heterogeneous population, as it was not present in the initial

flow cytometry experiments performed without cross-linking. In

addition, with low doses of AG12A we found a small number of
39, November 25, 2009 ª2009 Elsevier Ltd All rights reserved 1135
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cells that displayed a high amount of binding to the transgenic

T cells. This finding, we believe, was due to the difficulty associ-

ated with properly washing a cross-linked population of cells.

Therefore, despite these minor technical issues, we believe

that these data demonstrate clearly the specific binding of

AG12A to the autoreactive T cell population.

Ex Vivo Inactivation of Autoreactive T Cells Using
a Ruthenium-Peptoid Conjugate
Using the screening conditions developed in our laboratory,

peptoids are isolated routinely that bind their target with equilib-

rium dissociation constants in the mid to low micromolar range

(Kodadek et al., 2004). Therefore, the fact that AG12A binds to

MBP Ac1-11 autoreactive CD4+ T cells with a half maximal

binding activity of approximately 40 mm was unsurprising. Of

course, for practical applications, particularly for the inhibition

of autoreactive T cell proliferation, a higher affinity compound

would be desirable and efforts are underway to optimize the

structure of the peptoid. However, an alternative and far more

rapid approach to the development of a potent inhibitor was

developed recently in our laboratory (Lee et al., 2008; unpub-

lished data). This approach involves conjugation of the peptoid

to a ruthenium(II) tris-bipydridyl complex that is an efficient cata-

lyst for the generation of singlet oxygen when irradiated with

visible light. Singlet oxygen is a highly reactive species that will

modify and inactivate most proteins, but which has a limited

diffusion radius of only 40–80 Å. Thus, only proteins in the imme-

diate vicinity of the ruthenium ‘‘warhead’’ are affected. When

delivered to target proteins by the peptoid ligand, highly specific

photo-triggered protein inactivation can be achieved.

MBP Ac-1-11 -specific TCR transgenic T cells were incubated

with increasing concentrations of the AG12A-ruthenium conju-

gate (Figure 3A) or a control peptoid-ruthenium conjugate

Figure 3. Specific Inactivation of Autoimmune T Cells with a Visible

Light-Activated Peptoid-‘‘Warhead’’ Conjugate

(A) Cartoon illustrating the photocatalytic destruction of the autoreactive TCR.

AG12A was chemically coupled to Ru2+. After incubation with the ruthenium

peptoid complex, cells are irradiated with visible light (<380 nm). Irradiation

results in generation of singlet oxygen, which will inactivate the target receptor.

(B) CD4+ MBP Ac1-11-specific murine TCR transgenic T cells were isolated

from B10.PL mice and incubated with 1 mM or 100 nM concentrations of

AG12A-Ru2+, a control-Ru2+ peptoid, or solvent only (PBS or DMSO). Cells

were either irradiated at <380 nm for 10 min (hatched bars) or not exposed

to light (black bars). Cultures were diluted with antigen presenting cells iso-

lated from the spleens of wild-type B10.PL mice and stimulated with MBP

Ac1-11 peptide at a final concentration of 10 mg/ml. Proliferation was deter-

mined by adding [3H] thymidine to the cells for the final 16 hr of culture. Back-

ground levels of proliferation from cells that were not stimulated with antigen

were subtracted from the results shown.

(C) Same as (B) with the exception that CD4+ T cells used were isolated from

MOG 35-55-specific 2D2 TCR transgenic mice. Proliferation of these cells was

not affected by AG12A-Ru2+.

(D) Treatment with AG12A-Ru2+ prevents adoptive transfer EAE. CD4+ T cells

were isolated from MBP Ac1-11-specific TCR transgenic mice, incubated with

100 nm AG12A-Ru2+ or control-Ru2+ peptoid, and irradiated. Cells were then

stimulated with antigen presenting cells and 10 mg/ml MBP Ac1-11 peptide for

72 hr and transferred by i.p. injection to naive B10.PL mice. Mice were moni-

tored daily for clinical signs of EAE and mean clinical scores are depicted

graphically for AG12A-Ru2+ (open circles)-, control-Ru2+ (open squares)-,

antigen only (open triangles)-, and no antigen (stars)-treated groups. All results

shown are representative of two independent experiments.
09 Elsevier Ltd All rights reserved
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(Figure S2) and the cells were irradiated with visible light for ten

minutes (<380 nm cut-off filter). After irradiation, the T cells

were activated with the autoantigen MBP Ac1-11 in the presence

of antigen presenting cells. Cell proliferation was assessed

using a tritiated thymidine assay. As shown in Figure 3B, the

AG12A-ruthenium conjugate inhibited proliferation of MBP

Ac1-11-specific autoreactive T cells potently at a concentration

of 100 nM (Figure 3B). This inhibition was not seen when CD4+

T cells from myelin oligodendrocyte glycoprotein (MOG) 35–55

TCR transgenic mice were used (Figure 3C), demonstrating the

specificity of AG12A for MBP Ac1-11-specific autoreactive

T cells.

In addition, we demonstrated that even in the absence of

singlet oxygen production, peptoid AG12A is capable of inhibit-

ing proliferation of the MBP Ac1-11-specific autoreactive T cells

in a dose-dependent fashion, but that it has no effect on the

proliferation of mouse B cells or a different autoreactive T cell

line that recognizes a different antigen (see Figure S4).

Photopheresis therapies exist in which cells are removed from

the patient, treated with a photoreactive drug, exposed to UV

light, and re-infused back into the patient (Rostami et al., 1999;

Besnier et al., 2002; Cavaletti et al., 2006). Thus, although the

blue light required to trigger ruthenium tris-bipyridyl-catalyzed

singlet oxygen production cannot penetrate significantly into

a living organism, the ex vivo inactivation of autoimmune

T cells by a peptoid-ruthenium conjugate seems feasible given

this precedent. To test this theory and confirm that the autoreac-

tive T cells have been rendered unresponsive following treat-

ment with the peptoid-ruthenium conjugate and light, we used

an adoptive transfer model of EAE. CD4+ T cells were isolated

from MBP Ac1-11 TCR transgenic mice, treated with the

AG12A-ruthenium conjugate or the control peptoid-ruthenium

conjugate, irradiated with visible light, stimulated with MBP

Ac1-11 peptide in the presence of antigen presenting cells,

and injected back into naive recipients. These animals were

then observed for clinical signs of EAE. As anticipated, animals

injected with antigen-stimulated autoreactive T cells that had

been exposed to the control peptoid-ruthenium conjugate or

no peptoid developed EAE (Figure 3D). When the T cells were

neither stimulated with antigen nor exposed to a peptoid, adop-

tive transfer did not result in EAE, as expected. Strikingly, MBP

Ac1-11-specific CD4+ T cells stimulated with antigen and

treated with the AG12A-ruthenium conjugate did not induce

EAE in the recipient animals (Figure 3D). This experiment demon-

strates the feasibility of using autoreactive T cell-targeted ruthe-

nium peptoid conjugates as potent photo-triggered inhibitors of

autoimmune T cell activation ex vivo.

SIGNIFICANCE

We have demonstrated here a combinatorial library screen-

ing protocol that is capable of yielding synthetic molecules

that bind to antigen-specific autoimmune T cells. To the

best of our knowledge, this is the first example of synthetic,

unnatural molecules able to bind specifically to antigen-

specific T cells without the requirement for MHC presenta-

tion. Moreover, an important feature of the screening tech-

nology by which these molecules were identified is that no

knowledge of the native antigen recognized by the T cell is
Chemistry & Biology 16, 1133–11
necessary. It is true that we took advantage of the well-char-

acterized nature of the autoreactive T cells in EAE in order to

validate the utility of AG12A, but the screen itself simply

involved the identification of bead-displayed compounds

that bind to cells that are much more abundant in one pop-

ulation than another. Therefore, this technology should

constitute a powerful tool for the enrichment and inhibition

of autoimmune cells in a variety of disease states.

EXPERIMENTAL PROCEDURES

Bicolor on Bead Screening Assay

To identify peptoids binding specifically to autoreactive TCRs, a bicolor on-

bead screening assay was used as described previously (Udugamasooriya

et al., 2008) with minor modifications. Briefly, approximately 300,000 beads

were swelled in DMF, washed with PBS, and equilibrated in complete RPMI

1640 media containing 3% BSA. CD4+ T cells isolated from either EAE or

wild-type mice were resuspended in RPMI and labeled using quantum dots

(Invitrogen) according to the manufacturer’s instructions. CD4+ T cells from

EAE mice were labeled with Qtracker 655 (red) and CD4+ T cells from wild-

type mice were labeled with Qtracker 565 (green). Labeled cells were mixed

in a 1:1 ratio with a total of approximately 10 3 106 of each cell type. The cells

were then incubated with the peptoid bead library overnight in a 37�C incu-

bator with 5% CO2 and gentle shaking. The beads were gently washed two

times with RPMI media and were then visualized under a fluorescent micro-

scope (Olympus BX-51) with excitation of 340–380 nm using a DAPI filter

(1003 total magnification). Beads binding only to red-labeled cells were

selected manually using a 20 ml pipette. The ‘‘hit’’ beads were then washed,

boiled with 1% SDS for 30 min, and subjected to automated Edman

sequencing.

Peptoid Library Synthesis

Details regarding design of the peptoid library have been published previously

(Udugamasooriya et al., 2008). Briefly, the library was synthesized on TentaGel

macrobeads (140–170 mM diameter; substitution: 0.48 mmol/g resin; Rapp

Polymere). Synthesis of the library was conducted using eight different

amines, resulting in a theoretical diversity of 262,144 compounds. A 9-mer

library was synthesized using a microwave (1000 W)-assisted synthesis

protocol and a split and pool method (Olivos et al., 2002). At the completion

of library synthesis, beads were treated with a 95% TFA, 2.5% triisopropylsi-

lane, and 2.5% water mixture for 2 hr to remove side chain protection groups

and then neutralized with 10% diidoproplyethylamine in DMF. The beads were

washed with dichloromethane, dried, and stored at 4�C until use.

Resynthesis of Soluble Peptoids

Resynthesis of peptoid ligands and scrambled control peptoids was con-

ducted on Knorr amide MBHA resin (Novabiochem) using a standard micro-

wave-assisted protocol (Olivos et al., 2002) (1000 W microwave oven, 10%

power delivered for 2 3 15 s with brief mixing in between) . For biotinylated

and biotin-DOPA peptoids, Fmoc-Glu(biotinyl-PEG)-OH (Novabiochem) and

Fmoc-DOPA (Novabiochem) were subsequently coupled on Knorr amide

MBHA resin by a standard peptide synthesis protocol using Fmoc chemistry

(Udugamasooriya et al., 2008). A standard microwave-assisted protocol was

used to create the peptoid portion of the molecules as described above. Pep-

toids were cleaved from the resin with 95% TFA, 2.5% triisopropylsilane, and

2.5% water for 2 hr and purified using a Waters Breeze HPLC system. Mass of

peptoids was detected using a MALDI-Voyager DE Pro mass spectrometer.

Mice

Female B10.PL mice and 2D2 MOG 35-55 TCR transgenic mice were

purchased from The Jackson Laboratory and maintained in a federally

approved animal facility at the University of Texas Southwestern Medical

Center (Dallas, TX) in accordance with the Institutional Animal Care and Use

Committee. B10.PL Va2.3Vb8.2 TCR transgenic mice were a kind gift from

O. Stuve (University of Texas Southwestern Medical Center) and were bred
39, November 25, 2009 ª2009 Elsevier Ltd All rights reserved 1137
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and maintained in our animal facility. All mice were between 7 and 10 weeks of

age when experiments were performed.

EAE Induction

EAE was induced in wild-type B10.PL mice by subcutaneous injection over

four sites in the flank with 50 mg of MBP Ac1-11 emulsified in completed

Freund’s adjuvant. Pertussis toxin was administered at the time of immuniza-

tion and 48 hr later by i.p. injection. Mice were monitored daily for clinical signs

of EAE and given a clinical score based on the following criteria: 0 = no disease,

1 = limp tail, 2 = hind limb weakness, 3 = severe hind limb weakness/partial

paralysis, 4 = hind limb paralysis, 5 = moribund, and 6 = death due to EAE

(Racke, 2001).

CD4+ T Cell Isolation

Spleens and lymph nodes were isolated from EAE, wild-type, or TCR trans-

genic mice and single cell suspensions were made by passing through a

70 mm nylon cell strainer (BD Biosciences). CD4+ T cells were then isolated

by negative selection using a CD4+ T cell enrichment kit (BD Biosciences)

according to the manufacturer’s instructions. Briefly, a biotinylated mouse

CD4+ T lymphocyte enrichment cocktail was added to the cell suspension.

Addition of this cocktail results in labeling of erythrocytes and leukocytes

that are not CD4+ T cells. Following washing, magnetic streptavidin particles

were added to the suspension and all labeled cells migrated toward a magnet,

leaving the unlabeled CD4+ T cells in suspension. The CD4+ T cells were

retained and all other cells discarded. Following isolation, cells were washed,

counted, and resuspended in complete RPMI 1640 media for downstream

applications. The purity of the isolated T cells was analyzed by flow cytometry

and determined to be greater than 95%.

Flow Cytometry Binding Assay

After isolation of CD4+ T cells from TCR transgenic mice and wild-type

controls, cells were washed and resuspended in 0.1% BSA in PBS (FACS

buffer). The cells were incubated with increasing concentrations (1 mM,

10 mM, 100 mM, 250 mM, or 500 mM) of either the biotin-DOPA-AG12A peptoid

or a biotin-DOPA-control peptoid and incubated for 30 min at 37�C. Sodium

periodate (5 mM) was added to the cells for 15–30 s to cross-link the peptoid

to the target receptor. This reaction was quenched with DTT and the cells were

washed twice with 0.1% BSA in PBS. Fc block (BD Biosciences) was added to

the cells for 15 min on ice in order to reduce non-specific binding to Fc recep-

tors. The cells were stained with 1 mg anti CD4-PerCp Cy5.5 antibody and

0.02 mg streptavidin-allophycocyanin antibody (BD Biosciences) for 15 min

on ice. The staining was followed by two washes with 0.1% BSA in PBS and

the cells were run on a FACS Calibur flow cytometer to assess peptoid binding.

The data were analyzed using Flowjo software (Treestar) to determine the mean

fluorescent intensity and are shown as histograms. The mean fluorescent

intensities were plotted using GraphPad Prism software to determine an esti-

mated half-maximal binding activity value and are depicted as a line graph.

Preparation of Ruthenium-Peptoid Conjugates

Bis(2,20-bipyridine)-40-methyl-4-carboxybipyridine-ruthenium-bis(hexafluoro-

phosphate), diisopropyl carbodiimide, and HOBt were dissolved in DMF and

reacted with the previously generated deprotected peptoids for 2 hr at room

temperature (Lee et al., 2008). The compounds were washed and cleaved

from the resin as described above and purified with HPLC. The mass of

each peptoid was determined using a MALDI-Voyager DE Pro mass spec-

trometer.

Tritiated Thymidine Incorporation Proliferation Assay

Spleens from naive Va2.3/Vb8.2 TCR transgenic mice or 2D2 MOG 35-55 TCR

transgenic mice were harvested and single cell suspensions were made by

pressing through a 70 mm cell strainer (BD Biosciences). CD4+ T cells were iso-

lated as described above and resuspended in phenol red-free complete RPMI

media. 105 cells per well were plated in a 96 well plate and incubated with 1 mM

or 100 nM concentrations of AG12A-Ru2+, control peptoid-Ru2+, DMSO, or

PBS in quadruplicate. Cells were then irradiated for 10 min using a 150 W

Xenon arc lamp (Oriel) as described previously (Lee et al., 2008). Following irra-

diation, T cells were activated with 10 mg/ml of MBP Ac1-11 and 3 3 105

antigen presenting cells per well. Cultures were maintained in 96-well flat-
1138 Chemistry & Biology 16, 1133–1139, November 25, 2009 ª200
bottom plates for 96 hr at 37�C in humidified 5% CO2/air. The wells were

pulsed with 0.5 mCi/well [methyl-3H]thymidine for the final 16 hr of culture. Cells

were harvested on glass filters and incorporated [methyl-3H]thymidine was

measured with a Betaplate counter (PerkinElmer). Background levels of prolif-

eration from cells that were not stimulated with antigen were subtracted to

determine the percentage of maximum proliferation for each condition. The

results were determined as means from quadruplicate cultures and are shown

with SEM.

Adoptive Transfer

Spleens from naive Va2.3/Vb8.2 TCR transgenic mice were harvested and

single cell suspensions were prepared by pressing through a 70 mm cell

strainer (BD Biosciences). CD4+ T cells were isolated, treated with AG12A-

Ru2+ or control peptoid-Ru2+, irradiated, and activated with MBP Ac1-11 as

described above. After 72 hr, the cells were washed with PBS and 10 3 106

cells were injected i.p. into naive B10.PL mice. The mice were evaluated daily

for clinical signs of EAE as previously described (Racke, 2001).

SUPPLEMENTAL DATA

Supplemental Data include four figures and can be found with this article

online at http://www.cell.com/chemistry-biology/supplemental/S1074-5521
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